Algebraic estimates , stability of local zeta functions , and uniform estimates for distribution functions

نویسنده

  • JACOB STURM
چکیده

A method of “algebraic estimates” is developed, and used to study the stability properties of integrals of the form ∫ B |f(z)| −δdV , under small deformations of the function f . The estimates are described in terms of a stratification of the space of functions {R(z) = |P (z)|ε/|Q(z)|δ} by algebraic varieties, on each of which the size of the integral of R(z) is given by an explicit algebraic expression. The method gives an independent proof of a result on stability of Tian in 2 dimensions, as well as a partial extension of this result to 3 dimensions. In arbitrary dimensions, combined with a key lemma of Siu, it establishes the continuity of the mapping c→ ∫ B |f(z, c)| dV1 · · · dVn when f(z, c) is a holomorphic function of (z, c). In particular the leading pole is semicontinuous in f , strengthening also an earlier result of Lichtin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Application of the Norm Estimates for Univalence of Analytic Functions

By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

متن کامل

Coefficient estimates for a subclass of analytic and bi-univalent functions

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk. Upper bounds for the second and third coefficients of functions in this subclass are founded. Our results, which are presented in this paper, generalize and improve those in related works of several earlier authors.

متن کامل

Coefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials

In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.

متن کامل

Coefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions

The purpose of the present paper is to introduce two new subclasses of the function class ∑m  of bi-univalent functions which both f  and f-1  are m-fold symmetric analytic functions. Furthermore, we obtain estimates on the initial coefficients for functions in each of these new subclasses. Also we explain the relation between our results with earlier known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008